
iD-RI61 34? PARALLEL GARBAGE COLLECTION WITHOUT SYNCHRONIZATION /
OVERNEAO(U) ILLINOIS UNIV AT URBANA COMPFER SYSTEMS
GROUP A RAN ET AL. AUG 94 CSG-35 N99914-94-C-9149p NNN

UNCLSSIFIED F/O 9/2 H

*, -7 .,- 7

1111111.0.1

-
1 I 1.8

MICR~OCOPY RESOLUTION TEST CHART
N AT ONAr. SUREAU OF STAN04RS ,96 S~

L

REPORT CSG-35 AUGUST, 1984

PARALLEL GARBAGE COLLECTION
WITHOUT SYNCHRONIZATION
OVERHEAD

ASHWIN RAM
JANAK H. PATEL

DTICSELECTE
NOV 2 0 IM

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

IREPORT R-1019 UILU-ENG 84-2213

I I 18 85 033

Unclassified
SECUmrTY CL.ASSIpicATION OF THIS PAGEI:. REPORT DOCUMENTATION PAGE

?a REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKCINGS

Unclassified N/A
2& SECU14ITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

* N/A
2. ECLASSIFICATON/OOWNGRAOINGSCHEOULE Approved for public release; distribution

N/A unlimited. _______

4, PERFORMING ORGANIZATION RePORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NIJM8ERIS)

R-1.019 (CSG-35); UILU-ENG 84-2213 N/A
Be. NAME Of PERFORMING ORGANIZATION OIL OPPICE SYMBOL. 7&. NAME9 OF MONITORING ORGANIZATION

Coordinated Science Laboratory ft applicable)

University of Illinois J N/A Joint Services Electronics Program
dc. AOORGSS (City. State and ZIP Codu) 7b. AOOR9SS (City. S6900 and ZIP Code,

1101 West Springfield Avenue Office of Naval Research
Urbana, IL 6180180NotQunySre

b. NAMS OF FUNOINO/SPONSORING SIb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOEN4TIFICATION NUMBER

ORGANIZATION I IPpliaibdej

Joint Services Electronics Frog N/A N00014-84-C-0149
Gi. AOORESS City. State and ZIP Cod*) 10. SOURCE OFP UNOING NOS.

Office of Naval Research PROGRAM PROJECT TASK WORK UNIT

800 North Quincy Street ELEMENT NO. NO0. NO. No.

11* IL r Intun.aicvt Claificatiani Parallel Garbage
Collection Without Synchronization Overhead N/A N/A NIA N/A

12. PERSONAL AUTHOR(S)

* EaniZ Ahwjn And Patel. Janak H.
Ia&. TYPE OF REPORT i12b. TIME COVE REQ Ia. OATE OF REPOAT (yr.. M.. D"), is. PAGE COUNT

Tecnical FROM _____To____ August 1984 17
14. SUPPL.EMENTARY NOTATION

19. B ABSTRACT Con ju&, on m,.n.s itnacesaaiv id identify by' bdaciPumlirrpP

Incremental garbage collection schemes incur substantial overhead which is directly
translated as reduced execution efficiency for the user. Parallel garbage collection
schemes implemented via time-slicing on a serial processor also incur this overhead,
which might even be aggravated due to context switching. It is useful, therefore, to
examine the possibility of implementing a parallel garbage collection algorithm using
a separate pr~cesscr operating asynchronously with the main list processor. The over-
hpad in such a scheme arises from the synchronization necessary to manage the two

- rccessors, maintaining memory consistency.

:n this paper, we present an architecture and supporting parallel garbage collection
* al~yorithms designed for a virtual memory system with separate processors for list proces-
* sing and for garbage collection. Each processor has its own primary memory; in addition,

there is a small cotmmon memory which both processors may access. Individual memories

20. :IS-41OUTION/AVAILAB3ILiTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

b UNCLASSIFEO/UNLIMITEO iX SAME AS PT. UTnClaSERSied

22&. NAME OF RESPONSIBLE iNOIVICUAL 22b. TIELEP"CNE 14UMBER 22.OFFICE SYMBOL
'Include Afire Cod,.,

____ ___ ____ ___ ___ ____ ___ ____ ___ ___N/A

DO FORM 1473, 83 APR EDITION OF 1 jAN 73 -S OBSOLETE. Unclassified
SECURITY CLASSIFICATION OF WHISPA'GE

1Tnr I assqif ied
SECURITY CLASSIPICATION OP THIS PACE

19. ABSTRACT, continued

swap off a common secondary memory, but no locking mechanism is required. In
particular, a page may reside in both memories simultaneously, and indeed may
be accessed and modified freely by each processor. A secondary memory controller
ensures consistency without necessitating numerous lockouts on the pages.

Id

SecuRiTY CLASSFCATON ' c pc:

I7

PARALLEL GARBAGE COLLECTION
WITHOUT SYNCHRONIZATION OVERHEAD

Ash win Ram
Janak HI. Patel

Technical Paper R-1019 (CSG-35); UILU-ENG 84-2213

Coordinated Science Laboratory
University of illinois at Urbana-Champali Accesion For

1101 West Springfield Avenue
Urbana,]Illinois 61801 TSCA

unannoul,ced

ju tfc to

B y......-.---.--.--------------------

Parallel Garbage Collection Without Synchronization Overhead

Ashwin Ram
Janak IL Patel

Coordinmted Science Laboratory
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

Abstract

Incremental garbage collection schemes incur substantial overhead which is directly translated as
reduced execution efficiency for the user. Parallel garbage collection schemes implemented via time-slicing
on a serial processor also incur this overhead, which might even be aggravated due to context switching. It
is useful, therefore, to examine the possibility of implementing a parallel garbage collection algorithm
using a separate processor operaung asynchronously with the main list processor. The overhead in such a
scheme arises from the synchronization necessary to manage the two processors, maintaining memory

* consistency.

In this paper, we present an architecture and supporting parallel garbage collection algorithms
designed for a virtual memory system with separate processors for list processing and for garbage
collection. Each processor has its own primary memory; in addition, there is a small common memory
which both processors may access. Individual memories swap off a common secondary memory, but no
locking mechanism is required. In particular, a page may reside in both memories simultaneously, and "
indeed may be accessed and modified freely by each processor. A secondary memory controller ensures
consistency without necessitating numerous lockouts on the pages..'

1. Introduction

List processing systems use dynamic storage management techniques, and it is desirable to ease the.

burden on the user by providing automatic storage allocation and reclamation. An excellent survey of

various garbage collection algorithms can be found in [Cohen81j There are two basic alternatives for

automatic reclamation of storage: reference counting and mark-and-trace methods. The reference count

-!* method [Deutsch761 cannot detect self-referential structures inaccessible from the outside; in addition, space

and time overheads are incurred in maintaining these counts. Mark-and-trace garbage collection (Knuth73L

on the other hand, traditionally caused a complete disruption of computation while storage was reclaimed,

* which could take a substantial amount of time. Attempts to distribute the garbage collection time over

useful list proceing time to make it les unbearable led to incremental garbage collection algorithms

...-... *'.-'.p,-.'-*.:,..-',- .. ,,,: -',,

Par 2

(Deutsch76] and parallel garbage collection algorithms [Baker78, Dijkstra78, Hibino80, Lamport76,

Lieberman83, Newman82, Steele75] However. incremental schemes, as well as parallel schemes

implemented via time-slicing on a serial computer, suffer from substantial overhead which is less noticeable

since it gets distributed over useful processing time, but annoying nevertheless. The source of the overhead

is not completely obvious; in extended virtual memory systems, the garbage collection routines could

increase page swapping by substantial amounts.

True parallel garbage collection systems dedicate a separate processor to garbage collection. While

these overcome the CPU time overhead for garbage collection, they suffer from the necessity of

synchronization between the two processors If the processors share primary memory, they must have

exclusive access to the memory; in addition, the paging overhead caused by the garbage collector affects

directly the performance of the list processor. If the two processors maintain separate primary memories,

• pages from secondary memory must be locked out from simultaneous access to avoid memory

inconsistency.

In this paper, we present an architecture and supporting parallel garbage collection algorithms

designed for a virtual memory system with separate processors for list processing and garbage collection.

Each processor has its own primary memory, in addition, there is a small common memory which both

processors may access. Individual memories swap off a common secondary memory, but no lacking

mechanism is required. In particular, a page may reside in both memories simultaneously, and indeed may

be accessed and modified freely by each processor. A secondary memory controller ensures consistency

without necessitating numerous lockouts on the pages.

"- 2. Overview of the syntem

.- The proposed system, as shown in Figure 1, consists of two independent processors, the list processor

(LP) (often known as the mutator), and the garbage coUector (GC). These processors have independent

primary memories, in which pages of a common virtual space are maintained. In addition, there is a

peripheral processor called the disk controlUer (DC), through which the LP and GC interface to the common

secondary memory. The LP and GC may work on their own local copies of the same .age of the virtual

Pa"a.e Garbage Co ecion - ' - hout Synchronization Overhead

Page 3

4 is AiIk

Figure 1: System architecture

address space. Swapping is done through the DC, which ensures that a page written to secondary memory

b y either processor is merged with the version of the page that is already there (and which may have been

altered by the other processor during the time it resided in the swapping processor's primary memory). The

* merging process resolves differences between the two versions of the page. and guarantees memory

consistency.

1-.rallel Grarbair Colection Without Svnchroniation Overhead

Page 4

2.1. Terminolo

We adopt LISP terminology to refer to data objects and operations. The basic data object is a ixed size

* List ceU , or simply cel. A list cell stores two pointers, called the CAR and CDL ists are created by

chaining list cells into binary (spanning) trees, the leaves of which are the atoms in the system. Primitive

operations are provided to acce the pointers in a cell (CAR and CDR), test equality of two pointers (EQ),

tes whether an object is an atom or a list cell (ATOM), create a new list cell with specified pointer fields

(CONS), and replace the CAR or CDR pointers in a cell (REPLACA and REPLACD respectively). Cells ,-

are accessed by tracing the list structures starting from one of the roots in the system. A root is typically

an entry on the stack, or an atom on the OBLST (which stores pointers to all the atoms in the system, thus

guaranteeing their accessibility and uniqueness). A cell that cannot be reached from any root is garbage,

and needs to be returned to the pool of unused cells (the free Ulst) so that it can be reallocated if needed.

7.2 The List Processor

The LP needs to perform basic list procssing primitives on its data. These correspond to the LISP

• " functions CONS, CAR, CDR. RPLACA. RPLACD, EQ and ATOM. In our system, CAR, CDR. EQ and

ATOM present no particular difficulty, the interesting operations are CONS and REPLACE (which includes

RPLACA and RPLACD). CONS causes a new list cell to be allocated from the free list, and returns a

pointer to this cell. REPLACE replaces the pointer addrem in (one of the fields of) a cell, causing it to point

to a cell different from the one to which it pointed before the operation (which may posibly become

.~ garbage).

2.3. The Free List

The unallocated or free ce Ls in the mmten are chained together in a free Ust, each pointing to the .4.

next. New cells are allocated from this Ust and nuuasd cells are returned to this list after they become

garbage. The LP may request new cells via CONS at the same time as the GC is returning unused cells to

the free list. To allow thes two operations to be performed simultaneously, separate pointers to the head

t. and the tail of the free list are kept. Allocations are done from the head, while reclaimed cells are returned

Puaii.I O.Jkpl CaLlecuos Withst Sy- hroattog Ovorilead

Page 5

to the tail. The head and tail pointers are kept in the common memory, and may be accessed

simultaneously. The only case in which the LP needs to wait for the GC is when the free list runs out, ie,

the memory is exhausted; in such a case, however, the user program is probably too large for the available

virTual space anyway.

24 The Garbage Collctor

The GC processor uses a basic mark-and-sweep ilgorithm to trace all the reachable cells in the system.

The collection is performed in two phases

1) The mark phase, in which all the reachable cells in memory are marked.

2) The redam phase, in which all the unmarked (and hence unreachable) cells are returned to the free

list.

Since the GC maintains its own local primary memory, the LP need incur no overhead due to the

computation performed by the GC In addition. page faults caused when the GC traces through the list

structures marking reachable cells are localized to the GC's primary memory, and do not cause swapping

overhead as far as the LP is concerned.

2.5. The Disk Controller

Since the LP and the GC maintain local copies of virtual memory pages, they could simultaneously

modify memory contents which could ostensibly lead to inconsistency. This seeming inconsistency is easy

to resolve, however, since the manipulations performed by the LP and the GC are constrained by the very

definitions of their tasks. The DC has the responsibility of maintaining consistency by merging a page

when it is written out by the LP or the GC with the version that is currently on disk. The merging

operation can be performed with little overhead given appropriate hardware.

The merging algorithm depends on whether the page is being written by the GC or the LP, in

addition, it depends on the phase of the GC (Le, mark or reclaim). A flag for the OC's phase is therefore

kept in the common memory area, which is accessed on a mutually exclusive basis by the GC and the DC.

However, the GC need access the fdag only when it changes from one phase to another, a relatively

Paralel GiLrbage Colection Without yschronizatioa Overhead

Page 6

infrequent situation, and thus there is almost no synchronization overhead due to this.

2.6. Cell colorings

List cells in the system are colored to indicate their status. We need two bits per cell to store the

color. These are assigned as follows:

Green: A cell which is on the free list is unallocated, and is colored green.

Black: A black cell is known to be accessible from one of the roots in the system.

Yellow. During the mark phase of the GC, cells that have been reached but have yet to be traced or

explored further are colored yellow.

White: During the reclaim phase of the GC, cells that are white are inaccessible and therefore garbage.

3. Algorithms for the processors

We now develop the algorithms used by the three processors, and indicate how they interact

Extensions to the basic algorithms to improve performance will be treated in the next section.

3.1. The List Processor

As mentioned above, the primitive list operations that the LP needs to perform are CONS, CAR, CDR,

REPLACA. REPLACD, EQ and ATOM. Since the GC performs no relocation. CAR. CDR, EQ and ATOM

present no difficulty. We now consider CONS and REPLACE (RPL4kCA and RPLACD) in detail.

3.1.1. The CONS primitive

The CONS function gets an unused cell from the free list and returns a pointer to this cell. To do

this. it gets the next green cell, following the free list head pointer. This cell is blackened to mark it as

-" being reachable, and the free list head pointer is updated to point to the next free cell on the list.

To avoid synchronization conflicts with the GC (which may be returning cells to the free list), we

allocate cells from the head of the free list and return reclaimed cells to the tail of the free list. The head

-. and tail pointers can be accessed independently. The only situation in which the LP needs to wait for the

Paralloi Garbae CoUectio Without Synctronizaziou Overhead

• . " " .'
.: .- .- '. .. .- -.. : -. '.:: -. - .- ;:.--... '.,..-.--.. .'.. -.. '. .--..- ,-.. • .. .- - .- , .-. ,- -. '-.'. ...

Pare

GC is when the free list is empty, which is obviously unavoidable.

3.1.2. The REPLACE primitives

SA REPLACE operation modifies one of the pointers in a cell X to point to another cell Z. The cell that

was originally pointed to may become garbage as a result of this operation.

If the GC is in the mark phase, the cell Z should be marked as being reachable. If Z is already black.

nothing need be done, otherwise it should be marked yellow (since it may need to be traced further). The

LP must also indicate to the GC that it needs to trace the cell further. There are several ways in which

this could be implemented. The simplest method is to set a resant flag, and to let the GC continually scan

the memory until there is no rescan request. This process will eventually halt as all the reachable cells get

colored black. Modifications of this algorithm to reduce rescanning and page faults are examined in the

next section.

If the GC is in the reclaim phase, Z would already have been marked as being reachable. If the page

Z lies on has already been processed by the GC, it would have been marked white, otherwise it would be

black (this is explained in the next section). In either case, the LP does not need to alter the color of Z. The

LP could check which phase the GC is in (thus avoiding the need to acces Z in the reclaim phase), but this

would require a mutually exclusive access to a common flag. Since the LP and DC require read-only access

to this flag, we need only ensure that neither reads the flag while the GC is altering it. This is guaranteed

with current memory technology since it provides indivisible reads and indivisible writes. The GC changes

from one phase to another only at long intervals, and therefore this would cause negligible overhead.

3.2. The Garbage Collector

The GC is a separate processor dedicated to the task of garbage collection. It has its own primary

memory;, in addition, it can access the common memory. The OC continually cycles through two phases

the mark phase and the recLaim phase. There is a flag in the common memory which indicates the phase

- that the GC is in (as described in the previous section).

Piraiiel G rbap CoLlection Without Syschronizatioa Overhead

Page a

3.2.1. Mark Phase

In the mark phase, the GC scans the memory linearly looking for reachable cells. At the outset, all

cells are colored white, except for the cells on the free list which are green. To start off, all the roots in the

system, ie. cells which are directly reachable, such as atoms in the oblist and stack variables, are marked

yellow. The GC then scan the memory linearly from top to bottom, looking for yellow cells. From each

yellow cell, the GC traces the list structure recursively, terminating its scan whenever it reaches the end of

the list or a cell that has already been marked black. Each cell thus visited is marked black. The GC

continues this linear scan of the memory as long as the rescan flag is set, taking care to reset the flag before

each scan.

At this point, there are no yellow cells in secondary memory, since they have all been explored and

marked black. However, the LP could have yellow cells in its own primary memory on pages that had not

been written out to disk after the cells were colored yellow. The list structures starting at these cells must

also be traced. To do this, the GC now scans the LP's memory looking for yellow cells. Starting at the

addresses of these yellow cells, the GC traces the list structures within its own memory, marking them

black as before. If in this time the LP writes out a yellow cell to disk (detected by the DC), the cell will

have to be traced further in the usual way. In a naive scheme this involves another iteration of both parts

of the mark phase.

In the next section. we explore some alternative schemes with the intention of eliminating

unnecessary rescans, as well as reducing the page faults incurred by the GC during the marking process.

3.2.2. Reclaim Phase

In the reclaim phase, the GC scans the memory linearly from top to bottom, looking for white cells,

which did not get marked during the mark phase. These cells are colored green and returned to the tail of

the free list. Al other cells are either reachable or known to be on the free list, and hence would be either

black or green after the mark phase. The black cells are colored white in preparation for the next GC

cycle: the green cells are left unaltered. The GC should ensure it scans a page completely before it returns

it to disk.

Parallel 7tarbae CoUection Without Synchronization Overhead
-.-.. '..-- :'".. . . , .. ,-'-,

Page 9

After the reclaim phase is over, the GC must write out all its pages to disk, so that any changes made

within the GC-s local memory are actually recorded before it switches to the mark phase of the next

garbage collection cycle.

3.3. The Disk Controller

When a page is written to disk by either processor, the DC maintains memory consistency by reading

the page from the disk and merging the colors before writing it back to the disk. This could be done using

a fast buffer, as an alternative, we could use a disk with two heads, the write head being positioned some

distance after the read head. In this case, the DC would read the data as it passed under the read head,

merge it with the new data being written out, and write it back to disk as the sector passed under the

write head, without any overhead being caused by this operation in comparison with a normal write.

Since the merge requires very little processing, this implementation is feasible.

The color of the merged celU depends on the color of the corresponding cell on disk (the old cu) as

well as on the color of the new cea being written out. It also depends on which processor (the LP or the

- ~G) is doing the writing, and which phase the GC is in (since that determines the meaning of the colors).

The DC needs read-only access to the GC phase flag, which as discussed earlier causes negligible overhead.

It should also be noted that all combinations of colors are not encountered since they are constrained by the

very nature of the tasks of the processors. This is explained further in the following sections.

* 3.3.1. Mark Phase

When the GC is in the mark phase, only the following color changes can occur. The LP can color

cells black if they were originally green (during the CONS operation), and yellow if they were originally

white (during the REPLACE operations). The GC can only blacken cells that were originally white or

yellow.

3.3.1.1. Page received From LP

The LP can color only green cells black; thus, if a black cell is received from the LP, it must either

have been black already (no merging needed), or alternatively it could have been a green cell on the free

Pamrel Orbage CoLlection Without Synchroni-ation Overhead
.....-...................... "..... ...

i "'* "'"' '. Z- ,l', 'm
a

J"'aZ" lmd daai' il l ai[. *- * .. i *.-

ftge 10 e

list which has now been allocated, in which case it should be colored black. Thus when a black cell is

written back, the merged cell is black.

A white cell received from the LP must have been whibte when the LP read it (since the LP never

colors anything white>, the old c-Ii on disk can only be white (untouched) or black (having been colored

black in the meantime by the GC). In either case, the color of the old cell is taken as the color of the

merged cell

If a green cell is received from the LP, the corresponding cell on the disk must also be green. and no

merging is needed.

If a yellow cell is received from the LP, there are several possibiliies. If the corresponding cell on the

disk (the old cell) is white, it must have been white when the LP read the page and have been colored

yellow by the LP; in this case, the merged cell should be yellow. If the old cell is black it could have been

either white or yellow when the LP read the page. having been blackened by the GC in the meantime; in

this case, the merged cell should be black. The only other possibility is that the cell was originally yellow

and still is; the merged cell in this case is obviously yellow.

This can be summed up in the following table, where blank entries correspond to impossible

combinations of colors:

Color of merged cell _.._

Color of new cell in LP's pae: Black White Green Yellow
Color of old cell on disk:

Black Black Black Black
White White Yellow
Green Black Green

Yellow Yellow

The finally, needs to implement only the following rules, which can easily be done by a logical

* circuit:

1. Black merged over any other color results in black.
2. Any color merged over black results in black.
3. Yellow merged over white results in yellow.

ParUel Garbage Collection Without Syucbrosizatioa Overhead

.' - " " ,'" " " "' "". " ',," ", " "• ." ". " " . '" ." ". .' ' ,'',,' ', .' " .' '. ", .' " ' .' ' ', .' %' -' ', -" ". .' ,' ', ..' ',,' ', , " Q , j' '.C ,% .' "7A'

Page 11

The other function performed by the DC is the detection of yellow cells being written out by the LP

while the GC is scanning the LP's memory, as explained earlier.

3.3.12. Page Received From GC

In the mark phase, the GC can only color cells black that were originally white or yellow. Other

differences found in the colors are therefore due to the LP. If the cell received from the GC is yellow, the

corresponding cell on the disk must be yellow too, and no merging is needed in this case.

If a black cell is received from the GC, the cell could originally have been black, white (and since

then traced by the GC, possibly yellowed meanwhile by the LP) or yellow (and since traced by the GC).

In either case, the merged cell should be black.

A white cell received from the OC may originally have been white, in which case it stays white, or

.- yellow, in which case the LP has colored it yellow after the GC read the page. In the latter case, the

merged cell should be yellow.

If a green cell is received from the GC it must originally have been green. The corresponding cell in

memory at this time, therefore, would still be green unless the LP has in the meantime requested this cell

(via a CONS) and colored it black. In the former case, the merged cell stays green; in the latter case, the

merged cell is black.

. This can be summed up in the following table:

Color of merged cell
Color of new cell in Cs page: Black White Green Yellow*

Color of old cell on disk: i_ _ _-"

Black Black Black
White Black White
Green Green

Yellow Black Yellow Yellow

This can be implemented by the DC by a logical circuit realizing the following rules:

1. Black merged over any other color results in black.
2. Any color merged over black results in black.

Parllel Garbage Collection Without Synchronizatlion Overhead

. _. ., . . . : ,f . -, , , . • . , . • . - .. , - . -, . , -. . ,

Page 12

3. White merged over yellow results in yellow.

3.3.2. Reclaim Phase

In a similar manner, the merging rules for the reclaim phase of the GC can be formulated. The tables

describing these rules are:

3.3.2.1. Page Received From LP

Color of mereed cell
Color of new cell in LPs page: Black White Green Yellow

Color of old cell on disk. -

Black Black
White White White White
Green Black Green Oreen

Yellow "

3.3.2.2. Page Received From GC

Recall that during the reclaim phase, once the GC has started coloring black, cells white and white

cells green in a certain page, it must complete the operation on that page before returning it to the disk.

Color of merged cell
Color of new cell in GCs pate: Black White Green Yellow

Color of old cell on diskl_
Black White White

White Green

Green Green "
Yellow __

3.3.3. Merging revisited

We have presented rules for merging the colors of the new cells being written back to disk with the

colors of the corresponding cells already on disk. All these rules can collectively be implemented as a

logical operation on the color of the cell being received, the color of the corresponding cell on disk. the

Parailel Garbage Collection Without Synchronization Overhead

.. -.. . , ,. -:...-.

Page 13

proceMor writing out the page, and the phase of the CC.'

We also need to consider the merging of the data in the cells, i e the pointers in the CAR and CDR

fields of the cells. It is easy to figure out which of the cl"s, the old cell on the disk or the new one being

written out, contains the correct data to be placed in the merged cell. The only time the GC changes the

data in a cell is when it colors a white cell green and adds it to the free list during the reclaim phase, thus

making the green cell which was previously on the end of the free list point to this one. When the GC

writes this green cell back to disk, it finds either a white or a green cell there (depending on when this cell

was reclaimed). In either case, the merged cell should get its data from the new cel In all other cases, the

old cell will either have the same data as the new cel or would have been modified by the LP after the

page was read by the GC. The merged cell, then. would get the data from the old cell.

When a page is written out by the LP, a similar argument holds. When it writes out a white cell

over a green cell in the GC's reclaim phase, the old cell has the correct data. In other cases, the new cell

will have the correct data to be put into the merged cell.

4. Extensions and modifications

Since the disk is a shatb ",nited-bandwidth resource, excessive page faults in the GC would

eventually reduce the performance of the LP. It is desirable, therefore, to design the GC algorithms with a

view towards minimriing the page fault rate as far as possible. Further, we would like the GC to be, on

the average, "faster" in some sense than the LP, so that garbage is reclaimed faster than it is generated.

Reducing the GCs page fault rate helps in this respect; in addition, unnecessary rescanning of memory

during the GC's mark phase should be eliminated if possible. In this section, we explore some extensions

and modifications to the basic algorithms presented above in order to improve further the performance of

the system.

4.1. Eliminating unnecessary recans

In the mark phase, the GC scans the memory linearly looking for yellow nodes which need to be

traced further. When the LP replaces a pointer in a cell X to point to another cell Z, it colors Z yellow and

ParaUel Garbage ZoUeciom Without Synchronization Overhead..-......... ,- .
• ..; ._. * ...= ,,."" ":""_, ..,. .: '."?_ _" '" ' . " " " _,-- -", ," " :/ ," "'' , _ .' - .-. :.. .',= ...---. o . ,. ... , .,.. . ,

Page 14

requests a rescan by setting the rescan flag. However, if Z lies on a page that has not yet been scanned by

the GC, it will eventually be taken care of anyway when the GC gets to that page, and hence the rescan

request flag need only be set if Z lies on a page that the GC has already scanned.

Another alternative is to maintain a separate table for the addresses of the cells which need further

examination. In this scheme, a cell is treated as being yellow if it is colored yellow or if it appears in this

yellow table. The yellow table can be a fixed size high speed memory, preferably a content-addressable

(associative) memory. The GC would examine this first to look for yellow cells which need to be traced

before scanning the memory linearly. If the table fills up, the original scheme (mark the cell yellow and

set the rescan Bag) is resorted to until the table has vacancies again. Care should be taken that the table

manipulation does not cause the LP any overhead. Since the table is shared by the LP and the GC,

mutually exclusive access needs to be guaranteed, and this scheme may actually be worse as far as the LP is

concerned due to this. However, in the yellow table method, the LP doesn't need to access the cell Z itself,

as it would if it were to color it yellow. If Z lies on a page which is not currently in primary memory,

the coloring process would cause a page fault. If Z is used soon after the REPLACE, this fault does not

incur too much overhead, but otherwise the yellow table method is superior in this regard. Dynamic

measurements would be useful in judging the comparative utility of these schemes; measurements

performed in [Clark77, Clark79 help but are insufficient for the current purpose.

After scanning the disk completely in the mark phase, the OC, as explained earlier, must scan the LPs

memory looking for yellow cells that were never written out to disk (which, therefore, the GC did not

know about). The GC needs only to get the addresses of these cells, after which it traces the list structures

* from these cells within its own memory. During this scan, the LP may write out a yellow cell to disk.

The DC must detect this and request a disk rescan if this is so. To avoid rescanning the entire disk, the DC

can save the address of the yellow cell being written out in a table (the yellow table described above

would suffice). A disk rescan is then requested only if this table is full. The tablesize can be substantially

reduced by saving only the page number of the page being written out rather than the entire address of the

yellow cell The GC then has to scan this page to find the yellow cell, but this does not cause any extra

Par&ael Garbage Collecio Withoet Synchmnzation Overhe"ad _ .

page faults.

4.2. Reducing disk contention

As mentioned above, the disk is a shared limited-bandwidth resource, and therefore it is desirable to

reduce disk contention by reducing the page faults incurred by the GC. During the mark phase, the GC

traces down list structures which could be scattered through memory. In the basic scheme presented above,

the GC follows these sructures down till the ends of the lists. If a part of the structure being recursively

traced lies on a different page, that page will have to be brought in to the GC's primary memory. While

the GC has this page, it could as well examine the entire page rather than look only at the yellow cells

. which are part of the list it was originally tracing. Put another way, all the cellus in the pages currently in

the GCs primary memory should be examined and raced as far as possible within these pages. If a yellow

cell points out to a page not currently in primary memory, it is colored black as usual but the cell it points -

to is not brought in; instead, its address is stored in a table, and the GC continues tracing other yellow cells

within its primary memory. When no yellow cells remain, the pointers stored in the table are traced

further by bringing in their respective pages.

4.3. Alternative free list or0anizations

The unallocated or free cells in the system are chained together in a free list, each pointing to the

next. When the LP needs a new cell during the CONS operation, it has to get the next green cell from the

head of the free list. This cell, however, may lie on a different page from the one the LP is currently

working on. and on the average this increases the page faults incurred by the LP. In addition, lists built up
this way tend to be scattered through memory, which increases the number of page faults both when they

are used by the LP as well as when they are traced by the GC. To improve the locality of pointers in the

•. system, we present an alternative organization for the free list.

Instead of maintaining one free list for all the free cells, it is possible to keep a separate free list for

each page of memory. The head and tail of a page's free list are kept in the page header. New cells

l requested via CONS are allocated from the head of the free list of the current page, and reclaimed cells are

* Panlel larbag Co ecio Without Syachroizatioa Overhead

i-.-- .-- -. . : .-. ".-:'. . -'; :-: -- : Z ."-- .:;"-"- - -..'.- " .--': .- ::- ;'4:--_.- N ---N :.'. -% "'- ,'-.p'-'

*returned to the tail of the free list of the page they lie in. Since we do not want to lock pages out from

simultaneous access by the GC and the LP, only the free list head and tail pointers are kept, not its size. To

avoid inconsistency, the free list has a dummy header which is never allocated. The CONS algorithm. then,

allocates a cell from the current page unless the head and tail pointers are equal. In this case the free list is

empty, and afree cell needs tobe alocated from another page. This page could be the next page already in

primary memory, or the next page according to sequential number, or, to avoid clustering of full pages

during execution, a page chosen at random.

Returning reclaimed cells to the tail of the free list poses no particular diffculty. The merging

algorithm. however, must ensure that the free list head and tail pointers within page headers are merged

correctly. This is a simple extension to the merging rules presented earlier.

5 . Conclusion

We have presented a design for a parallel garbage collection scheme in an extended virtual memory

environment which almost completely eliminates synchronization overhead. The garbage collection is done

by a dedicated processor with a separate primary mnemory, leaving the list processor to perform its own

task. A disk controller maintains memory consistency in situations where the list processor and garbage

~ collector simultaneously modify their local copies of the same page. The ma-in advantages of the proposed

scheme is that the list processor does not incur overhead due to garbage collection, either directly (sharing

CPIU cycles, for example) or indirectly (increased page fault rate due to swapping necessitated by the

garbage collector's trace through the list structures in memory).

Parallel Garbage Collction Wltbout Synchroaion Overhead

.................................

References

(Baker78] . G. Baker, "List Processing in Real Time on a Serial Computer,* Communications of the
Association for Computing Machinery 21, 4 (April 1978), 280-294.

[Clark77] D. W. Clark and C. C. Green, "An Empirical Study of List Structure in Lisp,"
Commwmicatiou of the Association for Computing Machinery 20,2 (Feb 1977), 78-87.

[Clark79] D. W. Clark, "Measurements of Dynamic List Structure Use in isp," Institute of
Electrical and Electronics Engineers transactions on Software Engineering SE-5, 1 (Jan
1979), 51-59.

[Cohen8l] J. Cohen, "Garbage Collection of Iinked Data Structures" Computing Surveys 13, 3 (Sept
1981), 341-367.

(Deutsch76] L P. Deutsch and D. G. Bobrow, *An Efficient, Incremental, Automatic Garbage Collector,"
Communications of the Association for Computing Machinery 19, 9 (Sept 1976), 522-
526.

[Dijkstra78] E. W. Dijkstra, L Lamport, A. J. Martin, C. S. Sholten and . F. M. Steffens, "On-The-Fly
Garbage Collection: An Exercise in Co-operation" Cvmmunkaons of the Association for
Computing Machinery 21, 11 (Nov 1978), 966-975.

[Hibino80] Y. Hibino, "A Practical Parallel Garbage Collection Algorithm and its Implementation."
Proceedings of the Seventh Annual Symposium on Computer Architecture, May 1980,
113-120.

(Knuth73] D. E. Knuth, The art of computer programming, vol. I: Fundametal algorithms,
Addison-Wesley, Reading, MA, 1973.

[Lamport76] L Lamport, "Garbage Collection with Multiple Processes: An Exercise in Parallelism,"
Proceedings of the Institute of Electrical and Electronics Engineers International
Conference on Parallel Processing, 1976, 50-54.

(Lieberman83] -L Lieberman and C. Hewitt, "A Real-T',me Garbage Collector Based on the Lifetimes of
Objects," Communications of the Association for Computing Machinery 26, 6 (June
1983), 419-429.

[Newman82] L A. Newman and M. C. Woodward, "Alternative Approaches to Multiprocessor Garbage
Collection," Proceedings of the Institute of Electrical and Electronics Engineers
International Conference on Parallel Processing, Aug 1982, 205-210.

(Steele75] G. L Steele, "Multiprocessing Compactifying Garbage Collection," Communications of the
Association for Computing Machinery 18, 9 (Sept 1975). 495-508.

."

Pa-allel Oeslbae Coilecijom Without Synchronization Overhead

FILMED

/-86
p

C-

